itcsbanner.jpg

Publications

Filter by

Deep convolutional encoder-decoders with aggregated multi-resolution skip connections for skin lesion segmentation

The prevalence of skin melanoma is rapidly increasing as well as the recorded death cases of its patients. Automatic image segmentation tools play an important role in providing standardized computer-assisted analysis for skin melanoma patients. Current state-of-the-art segmentation methods are based on fully convolutional neural networks, which utilize an encoder-decoder approach. However, these

Artificial Intelligence

Deep Ensemble Learning for Skin Lesion Classification from Dermoscopic Images

Skin cancer is one of the leading causes of death globally. Early diagnosis of skin lesion significantly increases the prevalence of recovery. Automatic classification of the skin lesion is a challenging task to provide clinicians with the ability to differentiate between different kind of lesion categories and recommend the suitable treatment. Recently, Deep Convolutional Neural Networks have

Artificial Intelligence

Lvlnet: Lightweight left ventricle localizer using encoder-decoder neural network

Automatic localization of the left ventricle (LV) is an important preprocessing step in any further analysis or quantification of LV function. Also, LV localization is usually done manually by MRI operator to plan Cardiac Magnetic Resonance Imaging (Cardiac MR) acquisition which can be standardized and automated to reduce the operator's error. In this study, we propose LVLNET; an automatic left

A computed tomography-based planning tool for predicting difficulty of minimally invasive aortic valve replacement

OBJECTIVES Minimally invasive aortic valve replacement has proven its value over the last decade by its significant advancement and reduction in mortality, morbidity and admission time. However, minimally invasive aortic valve replacement is associated with some on-site difficulties such as limited aortic annulus exposure. Currently, computed tomography scans are used to evaluate the anatomical

Artificial Intelligence

Segmentation of left ventricle in cardiac MRI images using adaptive multi-seeded region growing

Multi-slice short-axis acquisitions of the left ventricle are fundamental for estimating the volume and mass of the left ventricle in cardiac MRI scans. Manual segmentation of the myocardium in all time frames per each cross-section is a cumbersome task. Therefore, automatic myocardium segmentation methods are essential for cardiac functional analysis. Region growing has been proposed to segment

Artificial Intelligence
Healthcare

Myocardial segmentation using constrained multi-seeded region growing

Multi-slice short-axis acquisitions of the left ventricle are fundamental for estimating the volume and mass of the left ventricle in cardiac MRI scans. Manual segmentation of the myocardium in all time frames per each cross-section is a cumbersome task. Therefore, automatic myocardium segmentation methods are essential for cardiac functional analysis. Region growing has been proposed to segment

Energy and Water
Agriculture and Crops
Mechanical Design
Innovation, Entrepreneurship and Competitiveness

Performance evaluation of cardiac MRI image denoising techniques

Black-blood cardiac Magnetic Resonance Imaging (MRI) plays an important role in diagnosing a number of heart diseases. The technique suffers inherently from low contrast-tonoise ratio between the myocardium and the blood. In this work, we examined the performance of different classification techniques that can be used. The three techniques successfully removed the noise with different performance

Artificial Intelligence

Cardiac MRI steam images denoising using bayes classifier

Imaging of the heart anatomy and function using magnetic resonance imaging (MRI) is an important diagnosis tool for heart diseases. Several techniques have been developed to increase the contrast-to-noise ratio (CNR) between myocardium and background. Recently, a technique that acquires cine cardiac images with black-blood contrast has been proposed. Although the technique produces cine sequence

Artificial Intelligence
Healthcare